
 1 © 2021 by ASME 

 
Proceedings of the ASME 2021 

International Mechanical Engineering Congress and Exposition 
IMECE2021 

November 1-5, 2021, Virtual, Online 

IMECE2021-70678 
 

MEETING ELECTRICITY DEMAND WITH DISTRIBUTED WIND AND SOLAR GENERATION: 
SYSTEM FLEXIBILITY DRIVES OPTIMAL SITING 

 

 

Enrico G. A. Antonini 
Carnegie Institution for 
Science, Department of 

Global Ecology, Stanford, 
CA, USA 

Tyler H. Ruggles 
Carnegie Institution for 
Science, Department of 

Global Ecology, Stanford, 
CA, USA 

David J. Farnham 
Carnegie Institution for 
Science, Department of 

Global Ecology, Stanford, 
CA, USA 

Ken Caldeira 
Carnegie Institution for 
Science, Department of 

Global Ecology, Stanford, 
CA, USA  

ABSTRACT 
Hundreds of gigawatts of renewable technologies, such as 

wind and solar, need to be installed to reach a zero-carbon 

electricity system that meets current and future energy needs. 

Locations of new installations are typically chosen based on 

wind and solar availability to maximize facilities’ capacity 

factors. Here, we show that this is not always true in least-cost 

models, and optimal siting depends also on the flexibility of the 

electricity system. To show this, we use a macro-scale energy 

model to evaluate capacities and dispatch in least-cost 

electricity systems with distributed wind and solar generation 

supported by battery storage. If battery storage were free and 

widely available, chosen locations for wind and solar 

installations would inevitably be in regions with the highest wind 

and solar capacity factors. However, as the battery storage cost 

increases and thus storage capacity decreases, chosen locations 

have lower capacity factors and the electricity system is more 

reliant on wind generation. In the case of a system without 

energy storage, only wind generation would in fact meet certain 

periods of electricity demand. This study suggests that current 

optimal wind and solar siting may no longer be the least-cost 

solution as the storage cost decreases. 

Keywords: macro energy modeling; distributed wind and 

solar generation; optimal siting. 

 

 

1. INTRODUCTION 
Transitioning to net-zero emissions electricity systems relies 

primarily on the use of renewable or zero-carbon sources. In 

2019, electricity generated from renewables was globally around 

one-quarter of the total generation, with hydropower being the 

largest contributor and wind and solar being the fastest growing 

[1]. Ambitious climate policies in the USA, the EU, India, and 

China, among others [2]–[4], along with the continuous fall in 

costs of solar and wind technologies [5] have driven a rise in 

renewable capacities and power generation. Meeting targets of 

net-zero emissions electricity systems, however, is still likely to 

require substantial increases in solar and wind generation 

capacity. Currently wind and solar make less than 10% of the 

worldwide electricity generation. 

Large shares of variable renewable energy technologies, 

such as wind and solar, added to power systems can pose several 

system integration challenges. The primary challenge arises 

from the fact that wind and solar resources are highly variable in 

space and time and not always available when needed to meet 

electricity demand [6]–[8]. Although wind and solar resources 

have some degree of complementarity that helps mitigate and 

smooth their variability [9], [10], reliable power systems mostly 

based on variable energy sources require effective grid 

management, backup power systems, and energy storage 

capacity [11]–[13]. For example, energy storage enables 

temporal shifting of the variable energy generation: energy is 

stored in times when it would be otherwise curtailed and used in 

times when the variable energy generation is lower than current 

demand [14]. Energy is stored both for short-duration (e.g., in 

Li-on batteries), when quick, daily demand compensation is 

needed [15], and long-duration (e.g., in power-to-gas-to-power, 

pumped hydro, or compressed air storage), when inter-season 

and multi-year storage is needed [16], [17]. In addition to 

storage, adding low- or zero-carbon firm generators (e.g., 

nuclear) can also lower the overall cost of decarbonized systems 

[18], [19]. Despite these challenges faced by utilities and 

operators when systems depend on large amounts of variable 

renewables, a variety of operational and technical solutions exist 

to add and integrate wind and solar generation and will likely be 

implemented in future years [20]–[25]. 

Planning for new power generation facilities at the system 

level requires strategic decision making. This is particularly 

important for wind and solar installations because their 

economic viability depends largely on the availability of 



 2 © 2021 by ASME 

resources, which are highly variable in space and time. Optimal 

site selection of solar installations is mostly driven by solar 

irradiance and equivalent sun hours [26], [27] whereas preferred 

locations for wind power plants are the ones with higher mean 

wind power potential at the turbine hub height [28]–[31]. For 

wind power plants, system level planning is then followed by 

turbine micro-siting to determine the positions of the individual 

turbines [32]–[36]. Methods for optimal siting in a distributed 

network have been developed to consider also other criteria 

related to environmental, economic, social, and technical aspects 

[37]–[39]. Studies on integration of distributed generation into 

the electrical grid have focused for example on line loss 

reduction or increased system voltage profile [40], [41]. 

However, these electrical integration studies have addressed 

small-scale, local distribution networks [42], [43]. At large-scale, 

evaluation of distributed wind and solar power developments has 

been conducted to meet certain generation thresholds without 

considering integration with the electric grid and demand 

profiles [44]. 

Here, we evaluate optimal siting of distributed wind and 

solar generation supported by energy storage to meet aggregated 

hourly electricity demand at the system level, with application to 

the U.S. We use hourly averaged wind and solar resource data 

from the year 2019, obtained from a reanalysis weather dataset 

[45], and hourly electricity demand data from the year 2019, 

obtained from balancing authorities across the contiguous U.S. 

[46], as inputs to a macro-scale energy model [47]. The spatial 

distribution of wind and solar generation is evaluated by 

subdividing the contiguous U.S. into 2,586 regions, 

corresponding to the grid cells of the reanalysis dataset. For each 

cell, we calculate hourly wind and solar capacity factor time 

series. The macro-scale energy model allows us to evaluate least-

cost solutions with installed capacities and dispatch schedules of 

each grid cell to meet the aggregated hourly demand time series. 

In evaluating capacities and dispatch schedules, we consider a 

varying cost for energy storage. This evaluation is important if 

we consider that the energy storage could become much cheaper 

(relative to variable renewable energy generation) in the future 

as long duration energy storage becomes widely available [48]. 

 
2. MATERIALS AND METHODS 

In this study, we use a macro-scale energy model, illustrated 

in Fig. 1. It includes a set of electricity generation facilities and 

a firm electricity load in the form of an hourly demand time 

series. For each generation facility, the model requires cost 

assumptions and hourly capacity factor time series. The model 

uses a linear optimizer (Gurobi Optimizer) to find the installed 

capacities and hourly dispatches, for all electricity generation 

facilities included in the system, that minimize total system cost. 

This system representation assumes lossless transmission from 

generation to load over the contiguous U.S. In such a system, 

location matters only for wind and solar power, while batteries 

and demand can be considered in aggregate because their 

contribution to the system cost is not affected by their spatial 

variability. Curtailment is allowed for variable renewable energy 

generation when supply exceeds demand, resulting in a loss of 

energy. The model includes an unmet demand component 

represented with a penalty cost (10 $/kWh). We use the term 

flexibility here to refer to the degree to which the power system 

can adjust generation by means of storage (e.g., batteries) in 

reaction to variability of demand or non-dispatchable 

technologies (e.g., wind and solar). 

We use this model to understand where variable renewable 

energy facilities supported by energy storage would be built to 

meet electricity demand most cost-effectively. The spatial 

distribution of wind and solar generation is evaluated thanks to 

the subdivision of the contiguous U.S. into the grid cells of the 

MERRA-2 reanalysis dataset. The dataset has a spatial resolution 

of 0.5° latitude x 0.625° longitude. Over the contiguous U.S., 

there are 2,586 grid cells with horizontal dimensions ranging 

from about 50 km x 50 km to 60 km x 60 km. For each cell, we 

calculate hourly capacity factor time series of wind and solar. 

For each cell, we also set maximum generation limits to prevent 

unrealistic, concentrated installations of wind or solar generation 

that could otherwise be selected by the optimizer. Specifically, 

we use two fixed values of mean power density that are 

consistent with observations, namely, 1 and 5 W/m2 for wind and 

solar generation, respectively [49], [50]. The maximum installed 

capacity for each cell is calculated by multiplying the maximum 

power density by the cell area. Further, the macro energy system 

assumes lossless transmission from generation to load.  

Each technology (wind, 𝑤, solar, 𝑠, or battery, 𝑏)  is 

characterized by a fixed hourly cost resulting from the capital 

expenditure, 𝑐𝑐𝑎𝑝𝑖𝑡𝑎𝑙 , and operation and maintenance costs, 

𝑐𝑂&𝑀: 

 

𝑐𝑓𝑖𝑥𝑒𝑑
𝑤,𝑠,𝑏 =

𝛾𝑐𝑐𝑎𝑝𝑖𝑡𝑎𝑙
𝑤,𝑠,𝑏 + 𝑐𝑂&𝑀

𝑤,𝑠,𝑏

8,760
, (1) 

 

where 𝛾 is the capital recovery factor, defined as: 

 

𝛾 =
𝑖(1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
, (2) 

 

where 𝑖 is the discount rate and 𝑛 is the asset lifetime in years. 

In the model, we introduce constraints on the installed capacity 

for both wind and solar, 𝐶: 

 

0 ≤ 𝐶𝑤,𝑠 ≤ 𝐶𝑚𝑎𝑥
𝑤,𝑠 , (3) 

 

as well as constraints on the dispatch time series at each time 

step, 𝐷𝑡: 
 

0 ≤ 𝐷𝑡
𝑤,𝑠 ≤ 𝐶𝑤,𝑠. (4) 

 

Batteries are characterized by constraints on the energy flowing 

into them, 𝐷𝑡
𝑡𝑜−𝑏:  

 

0 ≤ 𝐷𝑡
𝑡𝑜−𝑏 ≤

𝐶𝑏

𝜏𝑏
, (5) 
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and energy flowing from them, 𝐷𝑡
𝑓𝑟𝑜𝑚−𝑏

: 

 

0 ≤ 𝐷𝑡
𝑓𝑟𝑜𝑚−𝑏

≤
𝐶𝑏

𝜏𝑏
, (6) 

 

where 𝜏𝑏 is the storage charging duration. The total energy 

available in the batteries, 𝑆𝑡, is also constrained by the total 

capacity: 

 

0 ≤ 𝑆𝑡 ≤ 𝐶𝑏 , (7) 
 

and the energy flowing from the batteries is affected by the 

battery decay rate (fraction of energy loss per hour), 𝛿𝑏: 
 

0 ≤ 𝐷𝑡
𝑓𝑟𝑜𝑚−𝑏𝑡 ≤ 𝑆𝑡−1(1 − 𝛿𝑏). (8) 

 

The battery storage energy balance is modeled with the 

following equations: 

 

𝑆1 = (1 − 𝛿𝑏)𝑆𝑇∆𝑡 + 𝜂𝑠𝐷𝑇
𝑡𝑜−𝑏∆𝑡 − 𝐷𝑇

𝑓𝑟𝑜𝑚−𝑏
∆𝑡, (9) 

 

𝑆𝑡+1 = (1 − 𝛿𝑏)𝑆𝑡∆𝑡 + 𝜂𝑠𝐷𝑡
𝑡𝑜−𝑏∆𝑡 − 𝐷𝑡

𝑓𝑟𝑜𝑚−𝑏
∆𝑡, (10) 

 

where 𝜂𝑠 is the battery electrolysis efficiency. 

The whole system energy balance is defined as follows: 

 

∑ 𝐷𝑡
𝑤,𝑠∆𝑡

𝑤,𝑠
+ 𝐷𝑡

𝑓𝑟𝑜𝑚−𝑏
∆𝑡 = 𝑀𝑡 + 𝐷𝑡

𝑡𝑜−𝑏∆𝑡 + 𝐶𝑢 + 𝑈𝑑 , (11) 

 

where 𝑀𝑡 is the demand at time 𝑡, 𝐶𝑢 the curtailment, and 𝑈𝑑 the 

unmet demand.  

Lastly, the objective function to minimize is the system cost: 

 

∑ 𝑐𝑓𝑖𝑥𝑒𝑑
𝑤,𝑠,𝑏

𝑤,𝑠,𝑏
𝐶𝑤,𝑠,𝑏 (12) 

 

3. RESULTS AND DISCUSSION 
In this section, we present results of the optimization cases 

that we performed. Specifically, we evaluate optimal siting of 

distributed wind and solar generation supported by battery 

storage to meet aggregated hourly electricity demand at the 

system level for different battery storage costs. This evaluation 

is relevant if we consider that battery storage could become much 

cheaper in the coming decades. We consider cases with no 

battery storage, battery storage at today’s cost (366 $/kWh [51]), 

and four other variations in cost, namely 1.5, 0.5, 0.25, and 0.10 

times today’s cost. 

FIGURE 1: ILLUSTRATION OF THE MACRO ENERGY MODEL USED TO UNDERSTAND THE OPTIMAL SITING OF WIND AND 

SOLAR GENERATION SUPPOERTED BY BATTERY STORAGE. 
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In Fig. 2, we show a high-level analysis of the system 

architectures and costs resulting from the various cases we 

simulated. The installed capacity is normalized with the mean 

electricity demand, approximately equal to 450,000 MW. For 

example, the no storage case has a normalized installed capacity 

of 5.2, which indicates that the installed capacity is 520% of the 

mean demand. Note that for storage we show power-related 

capacity. In the case without storage, the system is characterized 

by the highest cost at 8.1 c$/kWh and a normalized installed 

capacity of 5.2, where wind has the largest share. At today’s 

battery storage cost, the system does not benefit much from the 

additional availability in energy storage. In fact, the system cost 

decreases to 7.5 c$/kWh, which is 7.5% less expensive than a 

system with wind and solar only. As the energy storage cost 

decreases, the storage capacity in the least-cost solutions 

increases. System costs decrease to 6.4 c$/kWh when battery 

storage costs are reduced by 90% from current estimates. This 

system cost represents a 21% decrease with respect to a no 

storage case. The high level of flexibility provided by battery 

storage leads to a better management of the energy generated by 

variable renewable resources, which are not always available 

when needed to meet electricity demand. The high system 

flexibility results in less electricity being unused and curtailed 

(quantified as the excess power generated with respect to the 

demand that is not used to charge batteries). 

In Fig. 3, we show the optimal locations of wind and solar 

installations to meet the aggregate electricity demand for various 

assumptions in battery storage cost. The color maps indicate the 

mean capacity factor of wind or solar for each cell in which we 

have subdivided the contiguous U.S. We notice that when cheap 

battery storage is available, preferred locations for both wind and 

solar are in regions with the highest mean capacity factors. Even 

though power generation fluctuations in these locations may not 

coincide with fluctuations in demand, cheap and widely 

available batteries can store the energy for times when it is most 

needed. As battery storage becomes more expensive and less 

diffuse, the energy system has less flexibility for temporal 

shifting of the variable renewable energy generation. This results 

in chosen locations that are characterized by lower mean 

capacity factors but that likely generate energy when it is needed. 

The optimal locations are more spread over the continental U.S. 

to leverage the spatial and temporal complementarity of the wind 

and solar generation. When no storage is available, the system 

becomes more reliant on wind generation because solar cannot 

meet nighttime demands. 

 

4. CONCLUSION 
In this preliminary study, we have analyzed the drivers of 

optimal siting of wind and solar installations to meet electricity 

demand. The use of an idealized macro-energy system model has 

allowed us to conduct a high-level analysis of electricity systems 

FIGURE 2: NORMALIZED INSTALLED CAPACITY AND SYSTEM COST FOR DIFFERENT ASSUMPTIONS IN BATTERY 

STORAGE COST. 
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and assess system-level impacts of various degrees of system 

flexibility represented by a varying battery storage cost. If energy 

storage were free and widely available, chosen locations for wind 

and solar installations would inevitably be in regions with the 

highest levels of resource availability. However, as the energy 

storage cost increases, and thus storage capacity decreases, 

chosen locations have lower capacity factors and the electricity 

system is more reliant on wind generation. This study also 

suggests that current optimal wind and solar siting may no longer 

be the least-cost solution as the storage cost decreases. 

Further studies should consider sensitivity analyses of 

additional parameters to better understand all the drivers of 

optimal siting decisions. Such sensitivity analyses could be 

conducted for system assumptions and constraints but also for 

the demand and weather data. For example, climate change 

projections for wind and solar could be incorporated to study the 

influence of climate change on siting decisions. 
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